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Abstract

The fluctuations of residues of proteins about their equilibrium configurations are analyzed by the Langevin equation. Residue pairs that

are covalently bonded and those that are within a given cutoff distance of each other are assumed to be connected by linear springs. The

actions of the solvent and intramolecular interactions on each residue are treated as random noise. The correlations of fluctuations resulting

from the solution of the Langevin equation are observed to be identical to those obtained by the Gaussian Network Model based on

equilibrium statistical mechanics. The time-delayed correlations of fluctuations, and the response of the protein to a given frequency and to a

window of frequencies are determined. The fluctuations of the residues resulting from a given fixed externally applied frequency are

evaluated for different modes of the system. Synchronous and asynchronous components of correlations for different modes are formulated.

The findings of the present paper are applied to the 241 residue protein S. marcescens endonuclease (1QL0).

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Atoms of proteins in the native state exhibit large scale

thermal fluctuations about their equilibrium positions. The

mean square deviation of an atom position from its average

value is proportional to its B-factor. The latter are obtained

from protein crystal structure data and are listed in the

Protein Data Bank files for a large number of proteins whose

three dimensional structure is known [1]. These fluctuations

result from large scale elastic motions [2–4] that contain

significant information on the flexibility and function of the

proteins. A simplified description of these fluctuations is

obtained by treating the bonds between contacting residues,

including the covalently bonded residues along the chain

contour, as linear springs. The analytical model based on

this linear springs model is the Gaussian Network Model,

(GNM) [5], which expresses the Hamiltonian of the system

as a quadratic function in the fluctuations of the alpha

carbons (Ca) of the protein. With this Gaussian Hamil-

tonian, the partition function of the system can be handled

analytically, and the correlations among all residues,

represented by the Ca’s, may be obtained through

equilibrium statistical mechanical techniques. The GNM

is based on the simple physical argument that if a residue is

surrounded by several other residues, its fluctuations will be

smaller than the fluctuations of others that have smaller

number of neighbors. Several papers, which followed the

original GNM paper showed that the linear springs picture

does indeed capture the basic physics underlying the

equilibrium fluctuations in proteins [6–10]. The spatial

fluctuations of residues in a protein result from the random

action of the surrounding molecules, and from the

intramolecular interactions within the protein molecule

itself. The dynamics of these fluctuations cannot however be

understood by equilibrium statistical mechanics alone, and

one needs to solve the equation of motion for the

protein þ solvent system in order to determine the time

and frequency dependence of the correlations. In the present

paper, we adopt the Langevin equation for this purpose. The

actions of the solvent and intramolecular interactions on

each residue are treated as random noise. The correlations of

fluctuations resulting from the solution of the Langevin
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equation are identical to those obtained by the GNM based

on equilibrium statistical mechanics. The time-delayed

correlations of fluctuations, which cannot be obtained by

the GNM, follow easily from the Langevin equation. We

also obtain the response of the protein to a given frequency

and to a window of frequencies by determining the

frequency components of the time correlation function.

We also evaluate the fluctuations of the residues in response

to a given fixed external frequency for different modes of

motion. This allows us to derive the synchronous and

asynchronous components of correlations. At the end of the

paper, we apply the findings of the present paper to the 241

residue protein S. marcescens endonuclease (1QL0).

We note that Gaussian networks have been analyzed

previously by Graessley and Kloczkowski et al. [11,12]

along similar lines to the methods presented in this paper,

and response spectra of elastomeric networks, in analogy to

the network of contacts in proteins, have been determined.

The elastic model of protein interactions is finding wide

popularity in the literature, specifically in analyzing the

domain motions and global deformation of protein

structure [13–16].

2. Theory

2.1. Representation of the protein

A protein is modeled as a linear chain that consists of N

backbone carbon atoms. In the coarse grained approxi-

mation the backbone atoms are the alpha carbon atoms, Ca,

on which all other atoms are assumed to have collapsed. The

position of the ith Ca atom is denoted by Ri. Neighboring

Cas along the chain are joined by virtual bonds. The

spatially neighboring Cas interact through non-bonded

forces. In its native state, the protein obtains a unique

configuration for which the total energy is a minimum. The

minimum energy configuration under excluded volume

constraints is a stable configuration for which the mean

positions Ri of the Cas are obtained. At this configuration,

each Ca exhibits fluctuations DRiðtÞ about the time

independent mean position, Ri: The experimentally deter-

mined B-factors, reported in the Protein Data Bank files, are

related to the mean-square fluctuations, kDR2
i l; by the

expression kDR2
i l ¼ 3=ð8p2ÞBi; where Bi corresponds to the

value for the ith Ca.

2.2. The energy of the protein in the Gaussian

approximation

The fluctuations of the residues are subject to quadratic

potentials, leading to the internal Hamiltonian, H

H ¼
1

2
DRTGDR ð1Þ

The n £ n matrix G, where n is the number of residues, is

expressed as

Gij ¼

2gHðrc 2 rijÞ i – j

2
X
ið–jÞ

Gij i ¼ j

8><
>:

9>=
>; ð2Þ

Here, g is the force constant specifying the strength of the

interaction between contacting residues as well as the

backbone covalent bonds. It has dimensions of force/length.

u is the Heaviside function, rij is the distance between

residue i and j; and rc is the cutoff distance for first order

contacts, taken as 7.0 Å in this and the previous studies. The

relatively small value of 7.0 Å is chosen intentionally in

order to include only the closest contacts in space. In

previous work, this cutoff value is taken typically between

10 and 13 Å [4–7].

2.3. The Gaussian network model

The GNM is based on the simple idea that the

fluctuations of residues are constrained to move in a domain

whose size should decrease as the number of its neighbors

increase [16,17]. The idea of fluctuation size being

dependent on the number of other objects sharing the

same volume was first developed for the analysis of random

Gaussian networks [16]. It was later shown that this model is

also valid for describing fluctuations in proteins [5,18]. The

partition function for the system whose Hamiltonian is

given by Eq. (1) is written as

Z ¼ C exp½2bDRTGDR� ð3Þ

where b is 1=kT ; k being the Boltzmann constant and T ; the

absolute temperature. The average of the fluctuations is

obtained from the partition function according to the

relation

kDRi·DRjl ¼
Ð
DRi·DRjexp½2bDRTGDR�d{DR}Ð

exp½2bDRTGDR�d{DR}
ð4Þ

where {DR} ¼ {DR1; DR2; …; DRn}: Performing the

integrations leads to the correlations between the fluctu-

ations of the Ca0s as

kDRi·DRjl ¼
3

2b
ðG21Þij ¼

3

2b

X
k

l21
k ðukÞiðukÞj ð5Þ

where, lk and uk are the kth nonzero eigenvalue and

corresponding normalized eigenvector of the G matrix, and

ðukÞi is the ith component of the kth eigenvector.

2.4. Derivation of the GNM results from the Langevin

equation

Eq. (5) is derived using Boltzmann statistics embodied

by Eq. (4). Here, we reformulate the problem using another

approach based on the Langevin equation [14,15].

The equilibrium state of the system is represented by the

average value of the position vector for each residue,
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�Ri ¼ ðxi; yi; ziÞ where the origin of the Cartesian coordinate

system is placed at the centroid, i.e.
PN

i¼1 xi ¼
PN

i¼1

yi ¼
PN

i¼1 zi ¼ 0: The system is excited by thermal

noise. To simplify matters, we first look at the motion

along the x-axis. The behavior along the y and z-axes will be

similar. We denote the x-component of the random force

(thermal noise) acting on the ith residue by FiðtÞ: These

forces will cause a perturbation (from equilibrium) DxiðtÞ in

the position of the ith Ca. It will be convenient to use vectors

DXðtÞ ¼ colðDx1ðtÞ;Dx2ðtÞ;…;DxNðtÞÞ ð6Þ

FxðtÞ ¼ colðFx1ðtÞ;Fx2ðtÞ;…;FxNðtÞÞ

where, Fx is the vector of x-components, Fxi; of the force

(thermal noise) acting on each residue i:

The equation of motion (in x-direction) is then [19]

mDX00 þ zDX0 þ GDX ¼ FxðtÞ ð7Þ

where m is the mass of each residue, z is the friction

coefficient, and the thermal noise FxðtÞ satisfies

kFxiðtÞFxjðt
0Þl ¼

z

b
dijdðt 2 t0Þ ð8Þ

Here, dij is the Kronecker delta and dðt 2 t0Þ is the Dirac

delta function. We express the force in terms of its Fourier

components in a time interval ½0; 2T�

FxðtÞ ¼ A0 þ
X1
p¼1

cos
pp

T
t

� �
Ap þ

X1
p¼1

sin
pp

T
t

� �
Bp ð9Þ

where the vector coefficients A0; Ap; and Bp are defined by

Eqs. (A-1)–(A-3) of the Appendix.

With this choice of the force, and neglecting the inertia

terms in Eq. (7), the equation of motion becomes

zDX0 þ GDX ¼ A0 þ
X1
p¼1

cos
pp

T
t

� �
Ap

þ
X1
p¼1

sin
pp

T
t

� �
Bpð10Þ ð10Þ

which has the solutions

DXðtÞ ¼ U0 þ
X1
p¼1

cos
pp

T
t

� �
Up þ

X1
p¼1

sin
pp

T
t

� �
Vp

þexpð2z21tGÞC: ð11Þ

Here, the vectors Up and Vp are to be determined and C is

arbitrary. Substituting Eq. (11) into Eq. (10), and equating

the sine and cosine terms yields

GUp þ z
pp

T

� �
Vp ¼ Ap ð12Þ

2z
pp

T

� �
Up þ GVp ¼ Bp ð13Þ

Eqs. (12) and (13) are solved for Up and Vp as

Up ¼ ðG2 þ z2v2
pIÞ21ðGAp 2 zvpBpÞ

¼ RpðGAp 2 zvpBpÞ ð14Þ

Vp ¼ ðG2 þ z2v2
pIÞ21ðzvpAp þ GBpÞ

¼ RpðzvpAp þ GBpÞ ð15Þ

where, vp ¼ pp=T and Rp ¼ ðG2 þ z2v2
pIÞ21: Note that in

particular U0 ¼ G21A0:

Our aim is to evaluate the correlation matrix kDXDXTl:
For this purpose, we substitute Eq. (11) into the matrix

valued integral, limT!1 1=2T
Ð2T

0 DXðtÞDXðtÞTdt; and take

the ensemble average. The limit of T !1 is taken because

we are interested in the long time averages. The steps

leading to the correlations are as follows:

lim
T!1

1

2T

ð2T

0
DXðtÞDXðtÞTdt

� �

¼ lim
T!1

kU0UT
0 lþ

1

2

X1
p¼1

kUpUT
p lþ kVpVT

p l
� �* +

ð16Þ

It is to be noted that the exponential term in Eq. (11) cancels

out in taking the long time limit. The averages on the right

hand side of Eq. (16) are obtained, using Eqs. (14) and (15)

as

kUpUT
p l ¼ RpðGkApAT

p lG2 zvpkBpAT
p lG

2zvpGkApBT
p lþ z2v2

pkBpBT
p lÞRp ð17Þ

kVpVT
p l ¼ RpðGkBpBT

p lGþ zvpGkBpAT
p l

þzvpkApBT
p lGþ z2v2

pkApAT
p lÞRp ð18Þ

The off-diagonal terms of the matrices kApAT
p l and kBpBT

p l
in Eqs. (17) and (18) equate to zero because of Eq. (8). The

diagonal terms are given by Eq. (A-5) in Appendix. The

matrices with mixed products, kApBT
p l; kBpAT

p l equate to

zero. The resulting expressions for the terms on the right

hand side of Eq. (16) are

kU0UT
0 l ¼

z

2bT
G22 ð19Þ

1

2
kUpUT

p lþ kVpVT
p l

� �
¼

z

bT
ðG2 þ z2v2

pIÞ22 for

p – 0 ð20Þ

Substituting Eqs. (19) and (20) into Eq. (16), and using the
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definition of vp; we obtain

lim
T!1

1

2T

ð2T

0
DXðtÞDXðtÞTdt

� �

¼
z

b
lim

T!1

1

T

1

2
G22 þ

X1
p¼1

ðG2 þ z2ðpp=TÞ2IÞ21

0
@

1
A ð21Þ

In the limit as T !1; the sum converges to an integral, the

G22 term on the right hand side goes to zero, and Eq. (21)

becomes

lim
T!1

1

2T

ð2T

0
DXðtÞDXðtÞTdt

� �

¼
z

pb

ð1

0
ðG2 þ z2v2IÞ21dv ¼

1

2b
G21 ð22Þ

The second equality in Eq. (22) is evaluated by diagonaliz-

ing G as described by Eq. (A-6) in Appendix. Finally since

the y and the z components will contribute in the same way,

we get the correlation

kDRDRTl ¼
3

2b
G21 ð23Þ

Eq. (23) is identical to the result obtained by Boltzmann

statistics outlined in the previous section and given by Eq.

(5). The use of the Langevin equation approach allows for

identifying the contributions of different frequencies to the

correlations whereas this is not possible with the Boltzmann

statistics. We elaborate on this in more detail in the

following sub-section.

2.5. Time-delayed correlation of fluctuations

The time-delayed correlation AðtÞ ; kDRðtÞ·DRðt þ

tÞTl between DRðtÞ and DRðt þ tÞ over a time interval T

is obtained by following the steps leading to Eq. (23). We

first look at the x components; as before,

lim
T!1

1

2T

ð2T

0
DXðtÞDXðt þ tÞTdt

� �

¼ lim
T!1

z

2bT
G22 þ

X1
p¼1

z

bT
cos

pp

T
t

� �
Rp

* +
ð24Þ

where the definition Rp ¼ ðG2 þ z2v2
pIÞ21 is used. This

follows from expanding the terms cos
�

pp
T
ðt þ tÞ

�
;

sin
�

pp
T
ðt þ tÞ

�
and following the same steps as above.

When T goes to infinity, the series converges to the integral

z

pb

ð1

0
cosðvtÞðG2 þ z2v2IÞ21dv ð25Þ

The matrix valued integral may be computed, as outlined in

Appendix (Eq. (A-8)), by diagonalization. Essentially, asÐ1
0 cosðvtÞðl2 þ z2v2Þ21dv ¼ ðe2z21ltÞ=ð2zlÞ for t . 0;

we conclude that

AðtÞ ¼
3

2b
G21e2z21tG ¼

3

2b

XN
i¼1

l21
i e2t=ti uiu

T
i ; ð26Þ

where ti is the relaxation time of the ith mode, ti ¼ z=li:

The factor 3 appears on the right-hand side of Eq. (26)

because we considered the contributions from the y and z-

components also. This expression is identical to the

equation derived previously [20] by multiplying the

Langevin equation with DXðtÞT from the right and

averageing.

2.6. Frequency response of the protein

The integral over the full frequency range in Eq. (22)

implies that the elements of the correlation matrix consist of

contributions from different frequency excitations of the

system. We define the frequency dependent correlation

matrix as AðvÞ ; kDRDRTlv; where the subscript v

indicates that only the contribution of that frequency is

considered. Generalizing Eq. (22) for the three components

x; y; and z;

AðvÞ ¼
3z

pb
ðG2 þ z2v2IÞ21

¼
3z

pb

XN
j¼1

1

l2
j þ ðzvÞ2

uju
T
j ð27Þ

The response of the system may more suitably be

investigated within a window of frequencies in the interval

[v1, v2]. The integral of Eq. (27) between these limits gives

Aðv1;v2Þ ¼
3z

pb

ðv2

v1

ðG2 þ z2v2IÞ21dv

¼
3

pb

XN
j¼1

l21
j ½arctanðv2zl

21
j Þ

2arctanðv1zl
21
j Þ�uju

T
j ð28Þ

The derivation of the second line is described in Appendix

by Eq. (A-9).

Eq. (28) shows a mild correlation between the frequen-

cies v of the external force and the eigenmodes of the

system, i.e. the eigenvalues and eigenmodes of G: For small

values of v; the dominant terms on the right hand side of Eq.

(28) are the ones corresponding to small eigenvalues since

arcxtanx ¼ OðxÞ for small x: This leads to the interpretation

that low external frequencies excite mainly the lower modes

whereas high frequencies excite the higher modes of the

system. The response of the system to a given frequency

may better be visualized by considering the rate of change
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of AðvÞ with v: The derivative A0ðvÞ of Eq. (27) is

A0ðvÞ ¼
6z3

pb

XN
j¼1

v

l2
j þ ðzvÞ2

h i2
uju

T
j ð29Þ

If only the ith mode is considered, the ratio function has a

maximum at v ¼ ð
ffiffi
3

p
=3Þðli=zÞ < 0:57735ðli=zÞ: The value

of A0ðvÞ at this maximum is A0ðvÞmax ¼ ð9
ffiffi
3

p
=8pbÞðz2=l3

i Þ;

which shows an inverse cubic dependence on the ith

eigenvalue. When the response of several modes is to be

considered, it is not possible to locate the maximum of Eq.

(29). However, one may then conveniently consider a

window ½v1; v2� of frequencies, and calculate the corre-

sponding contribution of the considered modes to frequen-

cies in this window. The resulting contribution DAðv1; v2Þ

is

DAðv1;v2Þ ¼
3z3

pb

X
j

v2
2 2 v2

1

ðl2
j þ z2v1Þðl

2
j þ z2v2Þ

uju
T
j ð30Þ

where, the summation may be performed over the modes of

interest.

2.7. Separation of synchronous and asynchronous terms for

correlation spectroscopy of the protein

Using FxðtÞ ¼ cosðvtÞ F0
x for the force in Eq. (7), the

fluctuation of residues for a fixed frequency may be written

from Eqs. (11), (14) and (15) as

DXðtÞ ¼ ðG cosðvtÞ þ zvI sinðvtÞðG2 þ z2v2IÞ21F0
x

þexpð2z21GtÞC ð31Þ

where, F0
x is a vector representing the single frequency input

to the system. Eq. (31) can be expanded in terms of the

eigenvalues lj and the corresponding orthogonal eigenvec-

tors uj of G

DXðtÞ ¼
XN
j¼1

ljcosðvtÞ þ zv sinðvtÞ

l2
j þ z2v2

ðF0
x ·ujÞuj

þexpð2z21GtÞC ð32Þ

Now suppose that the external force excites the kth

eigenmode of the system, i.e. F0
x ¼ uk; so that F0

x uj ¼ djk:

We will denote the output by DXðk; tÞ: In other words,

DXðk; tÞ¼
lkcosðvtÞþzv sinðvtÞ

l2
k þ z2v2

uk þexpð2z21GtÞCk ð33Þ

We first compute the long time averages, Aðk;mÞ ¼

kDXðk; 0ÞDXTðm; tÞl of the time delayed correlation of

the two modes k and m; defined as

Aðk;mÞ ¼ lim
T!1

1

2T

ð2T

0
DXðk; tÞDXðm; t þ tÞTdt

¼ lim
T!1

1

2T

ð2T

0

	
lkcosðvtÞ þ zv sinðvtÞ

l2
k þ z2v2

uk

 !

·
lmcosðvðt þ tÞÞ þ zv sinðvðt þ tÞÞ

l2
m þ z2v2

um

� �T

t

ð34Þ

As stated in the discussion following Eq. (16), the

exponential terms do not contribute in the long-time limit.

Expanding the parenthesis in Eq. (34) and performing the

integrations over the trigonometric functions, Eq. (34)

reduces to

Aðk;mÞ ¼ Fðk;m;vÞcosðvtÞ þCðk;m;vÞsinðvtÞ ð35Þ

where, Fðk;m;vÞ is the synchronous and Cðk;m;vÞ is the

asynchronous component of the time-delayed correlation

function associated with the kth and the mth modes for the

frequency v; which read as

Fðk;mÞ ¼
lklm þ z2v2

2ðl2
k þ z2v2Þðl2

m þ z2v2Þ
ukuT

m ð36Þ

Cðk;mÞ ¼
zvðlklmÞ

2ðl2
k þ z2v2Þðl2

m þ z2v2Þ
ukuT

m ð37Þ

3. Calculations for the protein 1QL0

In this section we investigate the dynamics of the protein

1QL0, which is a 241 residue protein, called S. marcescens

Fig. 1.
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endonuclease. It is to be noted that 1QL0 is a dimer of 482

residues. Due to size restrictions, we considered only the

monomer. This introduces an approximation to the G
matrix, because by considering the monomer, we are

ignoring the inter-protein contacts between residues 178,

180, 225, 226, 229, 231, 232, 235, 236 and 241 of the

respective monomers. However, since this approximation

involves only a very small number of contacts, the errors

introduced by this approximation are negligible. The three

dimensional structure of the monomer is shown in Fig. 1.

The protein has 3 major helices and 6 beta sheets as shown

by the ribbon diagram. The most mobile parts of the protein

are the tails. The most mobile internal residue SER53,

located in an internal loop is indicated in the figure. The four

pairs of residues that exhibit the highest cross-correlation,

obtained from the off-diagonal terms of the G21 matrix are:

GLY12-GLY221, SER34-ASP69, THR77-GLY159, and

GLU151-SER168. These pairs are indicated on the figure.

All of the indicated residues are located in the loop regions

that are the most mobile regions of the protein.

In Fig. 2, the experimental B-factors are compared with

the predictions of the GNM, where the lower and upper

curves are from experiment and theory, respectively. The

theoretical curve is obtained as follows: The G matrix,

defined by Eq. (2), is created by choosing unity for the

covalently bonded pairs and for the ij’th elements with a

cutoff distance of 7 Å. The diagonal elements of the inverse

G matrix is plotted in the upper curve of Fig. 2, where the

front factor 3=ð2bÞ is chosen to give the best match with the

experimental values. The curve obtained in this manner is

shifted up in Fig. 2 for clarity of comparison.

Three elements of the correlation matrix, given by Eq.

(27) is plotted in Fig. 3 as a function of frequency, for the

autocorrelation of the most mobile residue, SER53, and for

the cross-correlation of THR77-GLY159, and SER34-

ASP69. The curves obtained in this manner all have

maxima at zero frequency, and decay uniformly with

increasing frequency. These curves are fitted with a single

exponential function exp½2v=v0�; and the characteristic

frequency v0 obtained from this fitting is shown on each

curve. The fastest decay is for the autocorrelation of SER53.

The cross-correlations for the two pairs THR77-GLY159,

and SER34-ASP69 decay more slowly. This is in a way

counter intuitive, because SER53 contacts three other

residues in space, whereas THR77, GLY159, SER34 and

ASP69 contact 4, 7, 5, and 6 residues, respectively. One

would expect the characteristic correlation frequency to

vary directly with the number of contacts, whereas the

contrary is observed from Fig. 3.

In Fig. 4, the response of the correlation function for

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.
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THR77-GLY159 to a window of frequencies, calculated

according to Eq. (30) is presented for several frequencies.

The frequencies are indicated on each curve. For the

calculations, the front factor 3z3=pb and the coefficient z are

set equal to unity. The window v2 2 v1 is taken as follows:

v2 2 v1 ¼ 20
lmax 2 lmin

n
ð38Þ

Each curve is normalized by dividing with the correspond-

ing DAmax: A significant broadening is observed for larger

frequencies because at such high frequencies, a larger

number of eigenvalues are present in the fixed window

½v1;v2�; that contribute to the correlation function.

Calculations performed but not presented separately

indicate that the peaks obey the relation vmax;i ¼ 0:545li;

and the amplitudes scale with l23:07
i :

In Fig. 5 collective contribution of several modes around

the 10th mode to DA are plotted. The curves are normalized

with respect to DAmax: In the figure there are six curves,

calculated with modes 10, 9–11, 8–12, 7–13, 6–14, and

5–15. One sees that the dominant contribution to the shape

of the curves shown comes from the central mode, and

neither the peak, nor the width are affected by including

modes around the central mode.

The synchronous components of the correlation function,

calculated by using Eq. (36) for the pair THR77-GLY159

are shown for the modes 1–100 in Fig. 6. The value of zv is

equated to unity in the calculations. Similarly, the

asynchronous components are presented in Fig. 7. The

two figures show that significant synchronousity exists

between different modes, but asynchronousity is mostly

observed between small modes and between small and

larger modes.
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Appendix

Derivation of kA2
pl and kB2

pl of Eqs. (17) and (18): the

vectors Ap and Bp of the force given in Eq. (9) are the

Fourier coefficients defined by

A0 ¼
1

2T

ð2T

0
FðtÞdt ðA-1Þ

Ap ¼
1

T

ð2T

0
cosðvptÞFðtÞdt ðA-2Þ

Bp ¼
1

T

ð2T

0
sinðvptÞFðtÞdt ðA-3Þ

We will derive the ensemble average, kAp AT
p l in detail. The

others are obtained similarly.

First, we rewrite Eq. (8) in vector form. Since, kFiðtÞ·

FjðsÞl ¼
z

b
dijdðt 2 sÞ; we have kFðtÞ FTðsÞl ¼ ðzÞ=ðbÞdðt 2

sÞI; where I is the identity matrix. Then,

ApAT
p ¼

1

T2

ð2T

0

ð2T

0
cosðvptÞcosðvpsÞFðtÞFðsÞTds dt ðA-4Þ

so

kApAT
p l ¼

1

T2

ð2T

0

ð2T

0
cosðvptÞcosðvpsÞkFðtÞFðsÞTlds dt

¼
z

bT2

ð2T

0

ð2T

0
cosðvptÞcosðvpsÞdðt 2 sÞds dt

� �
I

¼
z

bT2

ð2T

0
cos2ðvptÞdt

� �
I ¼

z

bT
I ðA-5Þ

In the same way, kA0AT
0 l ¼ ðz=2bTÞI: kBpBT

p l ¼ ðz=bTÞI;

and for the mixed terms kApAT
q l ¼ kBpBT

q l ¼ 0 for p – q

and kApBT
q l ¼ 0 for all p; q:

Evaluation of the integral in Eqs. (22) and (25): The

matrix integral
Ð1

0 ðG2 þ z2v2IÞ21dv can be evaluated via

Fig. 7.

Fig. 6.
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the eigenvector matrix u ofG: The integrand can be written as

ðG2 þ z2v2IÞ21 ¼ ðuuTðG2 þ z2v2IÞuuTÞ21

¼ ðuðuTG2u þ z2v2IÞuTÞ21

¼ u diagonal½ðl2
j þ z2v2Þ21�uT

¼
XN
j¼1

ðl2
j þ z2v2Þ21uju

T
j ðA-6Þ

Since
Ð1

0 1=ðl2
j þ z2v2Þ dv ¼ p=ð2zÞl21

j ; we get from Eq.

(A-6)ð1

0
ðG2 þ z2v2IÞ21dv ¼

p

2z
u diagonal½l21

j �uT ¼
p

2z
G21

ðA-7Þ

Similarly,ð1

0
ðG2 þ z2v2IÞ21cosðvtÞdv

¼ u diagonal
ð1

0

1

l2
j þ z2v2

cosðvtÞdv

" #
uT

¼
p

2z
G21e2ltlz21G ¼

p

2z

XN
i¼1

l21
i e2liltl=zuiu

T
i ðA-8Þ

We note that the integral of the first line of Eq. (A-8) is

computed using the Residue Theorem.

Evaluation of the integral in Eq. (28): As in the

derivation aboveðv2

v1

ðG2 þ z2v2IÞ21dv

¼
XN
j¼1

ðv2

v1

ðl2
j þ z2v2Þ21dv

! "
uju

T
j

¼
XN
j¼1

z21l21
j ðarctan v2zl

21
j 2 arctan v1zl

21
j Þ21uju

T
j

ðA-9Þ

In particular, when v1 ¼ 0 and v2 !1; we recover Eq.

(A-8).
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